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Linkage Analysis of a Complex Disease through Use of Admixed
Populations
Xiaofeng Zhu,1 Richard S. Cooper,1 and Robert C. Elston2

1Department of Preventive Medicine and Epidemiology, Loyola University Medical Center, Maywood, IL; and 2Department of Epidemiology
and Biostatistics, Case Western Reserve University, Cleveland

Linkage disequilibrium arising from the recent admixture of genetically distinct populations can be potentially
useful in mapping genes for complex diseases. McKeigue has proposed a method that conditions on parental
admixture to detect linkage. We show that this method tests for linkage only under specific assumptions, such as
equal admixture in the parental generation and admixture that occurs in a single generation. In practice, these
assumptions are unlikely to hold for natural populations, resulting in an inflation of the type I error rate when
testing for linkage by this method. In this article, we generalize McKeigue’s approach of testing for linkage to allow
two different admixture models: (1) intermixture admixture and (2) continuous gene flow. We calculate the sample
size required for a genomewide search by this method under different disease models: multiplicative, additive,
recessive, and dominant. Our results show that the sample size required to obtain 90% power to detect a putative
mutant allele at a genomewide significance level of 5% can usually be achieved in practice if informative markers
are available at a density of 2 cM.

Introduction

Genomewide linkage analysis has been widely used as
a first step in attempts to positionally clone genes influ-
encing complex traits. However, the power of such stud-
ies is often low if the effect of the gene on the trait is
modest (Risch and Merikangas 1996). Association stud-
ies using the information generated by recent population
admixture (or admixture mapping) may provide an al-
ternative to family-based linkage analysis, because sig-
nificant linkage disequilibrium (LD) between two loci
can persist over several centimorgans in admixed pop-
ulations (Lautenberger et al. 2000; Pfaff et al. 2001;
Risch 1992; Stephens et al. 1994). In the United States,
the African American and Mexican American popula-
tions could be considered potential candidate popula-
tions for admixture mapping, because their DNA seg-
ments are derived from African/European and Native
American/European ancestry, respectively. The LD cre-
ated by admixture in African Americans can be detect-
able for as much as 30 cM after as many as 20 gener-
ations (Stephens et al. 1994; Lautenberger et al. 2000;
Pfaff et al. 2001). Because of the presence of long-range
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LD in an admixed population, the density of markers
required for a whole-genome search can be reduced in
comparison with what is required for an association
study.

Rife (1954) was the first to suggest the use of an ad-
mixed population to detect linkage, specifically in the
context of continuous traits, using correlation analysis.
Since then, several methods have been proposed to make
use of the disequilibrium arising from recent admixture
of two populations with differing trait and marker allele
frequencies in the mapping of genes for complex binary
diseases (Chakraborty and Weiss 1988; Risch 1992;
Stephens et al. 1994; Thomson 1995; McKeigue 1997,
1998; Kaplan et al. 1998; Zheng and Elston 1999; Halder
and Shriver 2003). Chakraborty and Weiss (1988) as-
sumed that the disequilibrium between alleles at the
marker and disease loci could be measured directly, which
is an assumption more suitable for Mendelian diseases
(McKeigue 1997). They suggested using a likelihood-ra-
tio test based on the history of admixture, which can be
difficult to model, because we usually lack detailed in-
formation on the history of the populations. Because ga-
metic disequilibrium generated by admixture persists for
a few generations even for unlinked loci, Stephens et al.
(1994) suggested excluding from the analysis those in-
dividuals whose ancestry changed within the past few
generations preceding the study, to avoid inflating the
probability of a false-positive error. Adopting this pro-
cedure can exclude many informative samples and can
make study recruitment more difficult, however. To avoid
these difficulties, McKeigue (1997) suggested using the
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Figure 1 Two admixture models used in the calculation of ancestral probability. Left panel, IA model. Right panel, CGF model.

transmission/disequilibrium test (TDT) (Spielman et al.
1993) to test for excess transmission to affected children
of alleles with different frequencies in the parental pop-
ulations. Because the degree of association between two
loci depends on the allele frequency differences in the
founding populations, Kaplan et al. (1998) further sug-
gested that the alleles within a locus should be grouped
according to the information they provide regarding
the parental and admixed populations, thus improving
power. Zheng and Elston (1999) introduced a multipoint
method based on the TDT method, for mapping the trait
locus position through use of admixed populations.
McKeigue (1998) proposed an intriguing method to test
for gametic disequilibrium between alleles at two loci
conditional on the parental admixture. He demonstrated
that testing for association between loci conditional on
parental admixture is a direct test for linkage. On the
basis of this idea, a score test adopting a Bayesian ap-
proach was proposed (McKeigue et al. 2000). However,
the claim that testing for “association of ancestry con-
ditional on parental admixture” is a test for linkage re-
quires the assumptions that the admixed population is
an equal mixture of the two parental populations and
that the admixture occurs in a single generation, followed
by recombination and drift, with no further genetic con-
tribution from either parental population. In practice,
these assumptions may not be valid. For example, Pfaff
et al. (2001) demonstrated that the African American
population has more likely experienced a continuous
gene flow (CGF) pattern of admixture. In an abstract,

Risch (1992) proposed an interesting idea that involved
sampling singleton cases for association analysis in ad-
mixed populations, but no further details were provided.
In this article, we theoretically calculate the probability
of the ancestral origin of a marker locus in an affected
individual under two admixture models: (1) intermixture
admixture (IA) and (2) CGF. We then propose a case-
only method of testing for linkage that can, with the
appropriate population, be more powerful than allele-
sharing linkage analysis. We investigate the power to test
for linkage under different disease modes of inheritance:
multiplicative, additive, recessive, and dominant.

Models

IA Model

Suppose we have an admixed population C (such as
African Americans or Mexican Americans) resulting
from two parental populations, X and Y (for example,
African and European or American Indian and Euro-
pean). At the first generation of the admixture process,
we let be the proportion of offspring of two per-1 � l

sons from population X and let l be the proportion of
offspring with one parent from X and the other from Y.
In the following generations, mating takes place at ran-
dom, regardless of the ancestry of the mates (fig. 1, left
panel). We also assume there is no mutation or selection.
This model has been designated “the IA model” (Long
1991).
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Table 1

Conditional Probabilities of Haplotype Gametes (h) Produced Given Parental Two-Locus Genotypes (g)

HAPLOTYPE

PROBABILITY GIVEN GENOTYPE

M MX XF
D D

(g1)

M MX XF
D d

(g2)

M MX XF
d d
(g3)

M MX YF
D D

(g4)

M MX YF
D d

(g5)

M MX YF
d D
(g6)

M MX YF
d d
(g7)

M MY YF
D D

(g8)

M MY YF
D d

(g9)

M MY YF
d d
(g10)

MXD (h1) 1 1/2 0 1/2 (1 � v)/2 v/2 0 0 0 0
MXd (h2) 0 1/2 1 0 v/2 (1 � v)/2 1/2 0 0 0
MYD (h3) 0 0 0 1/2 v/2 (1 � v)/2 0 1 1/2 0
MYd (h4) 0 0 0 0 (1 � v)/2 v/2 1/2 0 1/2 1

Let D and d represent the two alleles at a disease locus,
with allele frequencies in population X, andp , qX X

in population Y, respectively. Let M be a markerp , qY Y

locus, and let v be the recombination fraction between
the marker locus and the disease locus. On the assump-
tion of the IA model, at the first generation there are 7
of 10 possible genotypes (g) present, shown in table 1:
MXD/MXD, MXD/MXd, MXd/MXd, MXD/MYD, MXD/
MYd, MXd/MYD, and MXd/MYd, with probabilities

, , , , ,2 2(1 � l)p 2(1 � l)p q (1 � l)q lp p lp qX X X X X Y X Y

, and , respectively, where the slash marklq p lq qX Y X Y

indicates haplotype phase. Here, the subscripts “X” and
“Y” represent the population of origin of an allele. Table
1 presents the frequencies of the gametes produced by
all possible parental genotypes.

Let , and be the haplotype frequencies(1) (1) (1) (1)h , h , h h1 2 3 4

produced in generation 1. Then we have

l(1) [ ]h p (1 � l)p � p � (p � p )v ,1 X X X Y2

l(1) [ ]h p (1 � l)q � q � (q � q )v ,2 X X X Y2

l(1) [ ]h p p � (p � p )v ,3 Y X Y2

and

l(1) [ ]h p q � (q � q )v .4 Y X Y2

Because we assume that mating is at random, the
probabilities of the marker allele being from popu-
lations X and Y are and , respectively,1 � (l /2) l /2
in all generations. The frequencies of D and d remain

and ,[1 � (l/2)] p � (l/2) p [1 � (l/2)] q � (l/2) qX Y X Y

respectively, in the following generations. The haplotype

frequencies in the nth generation can be easily calculated
using the iterative formulas:

l l l(n) (n�1)h p (1 � v)h � v 1 � 1 � p � p ,( ) ( )1 1 X Y[ ]2 2 2

l l l(n) (n�1)h p (1 � v)h � v 1 � 1 � q � q ,( ) ( )2 2 X Y[ ]2 2 2

lv l l(n) (n�1)h p (1 � v)h � 1 � p � p ,( )3 3 X Y[ ]2 2 2

lv l l(n) (n�1)and h p (1 � v)h � 1 � q � q .( )4 4 X Y[ ]2 2 2

(1)

Let f0, f1, and f2 be the penetrances of the disease
genotypes DD, Dd, and dd, respectively. We further as-
sume that the penetrances are the same in both parental
populations. Let us also use the term “X by descent,”
as defined by McKeigue (1998), to denote an allele hav-
ing ancestry from X. Let be the proportion of(n)P (v)
marker alleles X by descent (the “ancestral probability”
from population X) among affected individuals at the
nth generation since admixture occurred. Then we can
write

1(n)P (v) p P(affected d g )� iP(affected) i

# P(an allele is X by descentd g )P(g ) ,i i

where gi is one of the 10 possible genotypes shown
in table 1, and represents the disease prev-P(affected)
alence at the nth generation in the admixed popula-
tion. At the nth generation, Hardy-Weinberg equilib-
rium proportions hold, and D and d have frequencies
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and , re-(1/2) [(2 � l)p � lp ] (1/2) [(2 � l)q � lq ]X Y X Y

spectively. Thus,

1 12
P(affected) p f (2 � l)p � lp � f (2 � l)p � lp[ ] [ ]2 X Y 1 X Y4 2

1 2
# (2 � l)q � lq � f (2 � l)q � lq .[ ] [ ]X Y 0 X Y4

From table 1 and the formulas in (1), after some algebra
we obtain

n�22 � l (2 � l � 2v)l(1 � v)(n)P (v) p �
2 8

y
# , (2)

P(affected)

where

[ ]y p (f � f ) (2 � l)p � lp{ 2 1 X Y

[ ]�(f � f ) (2 � l)q � lq (p � p ) .}1 0 X Y X Y

Let

2 2f p � 2f p q � f q2 X 1 X X 0 Xr p 2 2f p � 2f p q � f q2 Y 1 Y Y 0 Y

represent the relative risk ratio of parental population
X to Y. We then obtain, letting g be the genotypic risk
ratio:

1. for the multiplicative model ,2f p gf p g f2 1 0

n�22 � l (2 � l � 2v)l(1 � v)(n)P (v) p �
2 2

�r�1
# ;�(2 � l) r�l

2. for the additive model ,f � f p f � f2 1 1 0

n�22 � l (2 � l � 2v)l(1 � v)(n)P (v) p �
2 4

r � 1
# ;

(2 � l)r � l

3. for the recessive model , with ,f p f p p 01 0 Y

n�22 � l (2 � l � 2v)l(1 � v)(n)P (v) p �
2 2

(2 � l)(r � 1)
# ;

2(2 � l) (r � 1) � 4

and
4. for the dominant model , with ,f p f p p 12 1 X

n�22 � l (2 � l � 2v)l(1 � v)(n)P (v) p �
2 2

l(r � 1)
# .

2(1 � r)l � 4r

If population C is equally admixed by A and B and the
marker and disease loci are at the same position, we
have and . In this case, all of the formulasv p 0 l p 1
in the article by McKeigue (1998, p. 243) follow.

It can be seen that is equivalent top p p r p 1X Y

when . From equation (2) and the results forf � f 1 f2 1 0

models 1–4, we see that testing the null hypothesis
is equivalent to testing(n)H :P (v) p (2 � l) /2 v p0

or . Note that, at all generations,1 � (l /2) r p 1
is the ancestral probability that a marker al-(2 � l) /2

lele comes from parental population X. When ,l p 1
the null hypothesis becomes , which is(n)H :P (v) p 1/20

equivalent to testing or . McKeiguev p 1/2 r p 1
(1998) proposed a method he called “conditioning on
parental admixture,” to test for linkage between a
marker and a disease locus by testing the null hypoth-
esis (McKeigue 1998, p. 243). He sub-(n)H :P (v) p 1/20

sequently let the null hypothesis be(n)H :P (v) p 1/20

equivalent to the null hypothesis (p. 244).H :r p 10

However, is equivalent to the joint test(n)H :P (v) p 1/20

of and , provided there is an equal ad-v p 1/2 r p 1
mixture rate from each parental population. In prac-
tice, we rarely observe a population with an equal ad-
mixture rate, and then only by following a very special
sampling scheme. It should be pointed out that r p 1
should not be considered as a null hypothesis and that

is a necessary condition for to(n)r ( 1 H :P (v) p 1/20

be equivalent to .v p 1/2
From equation (2), is always a strict monotonic(n)P (v)

function of the recombination fraction v between a
marker locus and a disease locus when , indepen-r ( 1
dent of the marker allele frequencies. After the first two
generations, asymptotically tends to the expected(n)P (v)
ancestral probability from the parental population X, at
a rate of . achieves its maximum or min-n�2 (n)(1 � v) P (v)
imum value when . Whether it is a maximum orv p 0
minimum value depends on which ancestral population
has a higher frequency of the D allele. Thus, to estimate
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the location of the disease locus, we can find the position
maximizing or minimizing , provided we are able(n)P (v)
to estimate .(n)P (v)

CGF Model

In the previous section, we discussed a model in which
admixture occurs in the first generation alone, followed
by recombination and drift, with no further genetic con-
tribution from either parental population. We now study
the CGF model, in which admixture occurs at a steady
but reduced rate in each generation (fig. 1, right panel)
(Long 1991; Pfaff et al. 2001). This model is more likely
than the IA model to mimic observed experience with
the African American population. Neither mutation nor
selection are considered here.

In appendix A, we show how, under the CGF model,
can be expressed as a function of , , v, the(n)P (v) p pX Y

generation n, and the penetrance functions. Further-
more, we show that it is a monotonic function of v. Thus,

has properties under the CGF model similar to(n)P (v)
those under the IA model. Therefore, to estimate the
position of the disease locus, we again find the position
maximizing or minimizing . Using the formula for(n)P (v)

in appendix A and the model assumptions, we(n)P (v)
obtain

1. for the multiplicative model,

(n)P (v) p

l l l ln n �1� �(1 � ) (1 � l)(1 � ) ( r�1) � 1 � 1 � (1 � ) c ( r�1)[ ][ ]222 2 2 2
;

l ln n� �(1 � l)(1 � ) ( r�1) � 1 (1 � ) ( r�1) � 1[ ][ ]2 2

2. for the additive model,

(n)P (v) p

l l ln n(1 � ) 0.5(1 � l)(1 � ) (r � 1) � 0.5c (r � 1) � 1 �[ ]222 2 2
;

l n0.5(2 � l)(1 � ) (r � 1) � 12

3. for the recessive model , with ,f p f p p 01 0 Y

(n)P (v) p

l l ln n�1(1 � ) (1 � l)(1 � ) c (r � 1) � 1 �[ ]222 2 2
;

l 2n(1 � l)(1 � ) (r � 1) � 12

and

4. for the dominant model , with ,f p f p p 12 1 X

(n)P (v) p

l l l ln n�1(1 � ) 1 � (1 � l)(1 � ) (1 � )(1 � r) � c (r � 1) � (1 � )r[ ][ ]{ }222 2 2 2
,

l ln n1 � (1 � ) 1 � r � (1 � l)(1 � ) (r � 1) � r[ ][ ]2 2

where

l l ln nv(1 � l)(1 � ) � (1 � v � )(1 � v)2 2 2
c p .22

l(v � )2

Therefore, a test of the null hypothesis (n)H :P (v) p0

or is not equivalent to a test for linkage.1/2 r p 1

Test of Linkage between a Marker Locus
and a Disease Locus

We have proved that is a strict monotonic function(n)P (v)
of v for both the IA and the CGF models when .r ( 1
Furthermore, achieves its maximum or minimum(n)P (v)
at the disease locus. Therefore, a way to test for linkage
between a marker locus and a disease locus is to test the
null hypothesis , which is equivalent(n) (n)P (v) p P (0.5)
to testing when . That is, we can test forv p 0.5 r ( 1
linkage by testing that the parental ancestry of the
marker alleles is equal to that of a marker unlinked to
the disease locus. Assume that we can estimate at(n)P

any position in the genome. For simplicity, we further
assume, for the moment, that there is only one disease
locus across the genome. Then, the vast majority of the
markers across the genome are unlinked to the disease
locus. Theoretically, at all marker locations unlinked to
the disease locus, is expected to equal , so(n) (n)P P (0.5)
we can estimate the distribution of under the null(n)P

hypothesis by genotyping markers unlinked to the dis-
ease locus and calculating at these unlinked markers.(n)P

This procedure is similar to the genomic control method,
in which a set of unlinked markers is used to control
the false-positive rate due to the effect of population
heterogeneity (Devlin and Roeder 1999). For instance,
assume that we have estimated proportions of X by
descent at m markers unlinked to the(n) (n) (n)ˆ ˆ ˆP ,P , … ,P1 2 m

disease locus. Asymptotically, we can assume that
approximate a normal distribution,(n) (n) (n)ˆ ˆ ˆP ,P , … ,P1 2 m

. To test the null hypothesis that a marker(n) 2N [P (0.5),j ]
is unlinked to the disease locus—that is, (n)P (v) p
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Figure 2 IA model. Number of cases required for 90% power to detect linkage at a significance level of .001 at different population risk
ratios and recombination fractions between marker and disease loci under four genetic models: multiplicative, additive, recessive (with the low-
risk allele in the low-risk population), and dominant (with the high-risk allele in the high-risk population). Upper panels, Total contributions
of the parental populations X and Y are 50%/50% ( ). Lower panels, Total contributions of parental populations X and Y are 74%/l p 1.0
26% ( ). Samples are drawn from the 10th generation.l p 0.52

, if and are known—we can use the(n) (n) 2P (0.5) P (0.5) j

statistic

(n) (n)P̂ (v) � P (0.5)
Z p

j

and assume that Z follows a standard normal distri-
bution, where is the estimator of at the(n) (n)P̂ (v) P (v)
marker locus tested. On the assumption that we know
which population has the higher disease risk due to seg-
regation at the locus being tested, so that we know a
priori the sign of Z, we perform a one-sided test and
reject the null hypothesis at the a significance level if

is greater than the th percentile of theFZF 100(1 � a)
standard normal distribution. In practice, we would es-
timate and from by the sam-(n) 2 (n) (n) (n)ˆ ˆ ˆP (0.5) j P ,P , … ,P1 2 m

ple mean and variance and perform the corresponding
one-sided t test.

The proposed test requires estimating conditional(n)P

on the marker data. In appendix B, we propose a hidden
Markov model (HMM) method to estimate . We(n)P

refer to the HMM method that uses the transition ma-
trix derived from the IA model as “IA-HMM,” and we
refer to that derived from the CGF model as “CGF-
HMM.” As a by-product, we can also estimate the num-
ber of generations since the admixture occurred and the
current admixture rate. The proposed test also requires
markers unlinked to the disease locus, which we cannot
observe with certainty. However, we can include all of
the available markers, because including markers linked
to the disease locus will only lead to the test being con-
servative—the estimated will be biased toward(n)P (0.5)
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Figure 3 CGF model. Number of cases required for 90% power to detect linkage at a significance level of .001 at different population
risk ratios and recombination fractions between marker and disease loci under four genetic models: multiplicative, additive, recessive (with the
low-risk allele in the low-risk population), and dominant (with the high-risk allele in the high-risk population). Upper panels, Total contributions
of parental populations X and Y are 50%/50% ( ). Lower panels, total contributions of parental population X and Y are 74%/26%l p 1
( ). Samples are drawn from the 10th generation.l p 0.06

the alternative hypothesis, and the variance will be in-
creased. Alternatively, especially if there may be several
linked loci, we can assume a mixture of two distribu-
tions and use a commingling analysis (MacLean et al.
1976; Efron 2004) to obtain more-appropriate esti-
mates of and .(n) 2P (0.5) j

Power of Admixture Mapping

The power to detect linkage between a marker and a
disease locus is dependent on various model parameters,
including penetrance functions, disease allele frequencies
in X and Y, different admixture rates, the recombination
fraction between the marker and disease loci, and the
accuracy of the estimated proportion X by descent at a
marker locus. Assume that we can accurately estimate

this ancestral probability at a marker locus. Then, we
can model drawing a locus from the ancestral popula-
tions X and Y with a binomial distribution (McKeigue
1998). With a one-sided type I error rate a and power
of detecting linkage , for large samples the required1 � b

number of cases given the probability is then(n)P (v)

2(n) (n) (n) (n)� �P (0.5)[1 � P (0.5)]Z � P (v)[1 � P (v)]Z1�a 1�b1
N � ,( )(n) (n)2 P (v) � P (0.5)

where the factor 1/2 arises from each individual having
two alleles.

Figure 2 presents the sample size required at the 10th
generation for the IA model, under four possible modes
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Figure 4 Number of cases required for 90% power to detect linkage at a genomewide significance level of .05, when 3,000 markers are
evenly placed along the genome, under four genetic models: multiplicative, additive, recessive (with the low-risk allele in the low-risk population),
and dominant (with the high-risk allele in the high-risk population). The population has been admixed for 10 generations, according to the
CGF model. Total contributions of parental populations X and Y are 74%/26% ( ). Left, X has a higher population risk than Y; thel p 0.06
curve for the dominant model does not appear because the number is 12,500. Right, Y has a higher population risk than X. Samples are drawn
from the 10th generation.

of genetic inheritance: multiplicative, additive, recessive
with a low-risk allele in the low-risk population, and
dominant with a high-risk allele in the high-risk pop-
ulation, as studied by McKeigue (1998). The sample
size is calculated to provide 90% power to detect link-
age at a significance level of .001. The sample sizes
required at the 10th generation for the CGF model,
under the same genetic inheritance models, are pre-
sented in figure 3. In both figures 2 and 3, the upper
row of panels shows results calculated with a current
admixture rate of 50%/50% (X/Y), which corresponds
to for the IA model and for the CGFl p 1.0 l p 0.06
model, respectively. The bottom row of panels shows
results calculated with and 0.03 for the IAl p 0.52
and CGF models, respectively, corresponding to an
admixture rate of 74%/26% (X/Y), which mimics the
contemporary African American population. We assign
parental population X a higher disease risk than pop-
ulation Y. These results suggest that power is at a max-
imum for admixture mapping when the admixture rates
are equal. The sample size required for the CGF model
is slightly larger than that required for the IA model
when but is smaller when , especial-v ! 0.01 v � 0.05

ly for the dominant model. Overall, 1,000 cases are
enough to detect linkage with 90% power at a signif-
icance level of .001 when the population relative risk

and , except under a dominant inheritancer 1 2 v ! 0.05
model. For the CGF model, this sample size is sufficient
when the current admixture rate is similar to what
would be found when generations (data notn p 20
shown). If , which indicates that the marker andv p 0
disease loci are at the same position, 500 cases are usu-
ally enough—again, except under dominant inheritance.
In contrast, to achieve 90% power at a significance level
of .001 to detect linkage, for the sample size of the
affected-sib-pair design to be !500 families requires the
frequency of the high-risk allele to be !0.25 or the ge-
notype relative risk ratio to be 13 (Risch and Merikan-
gas 1996; McKeigue 1998).

If we consider genomewide admixture mapping with
1 marker/cM and a total of 3,000 markers genotyped,
what is the sample size required to achieve 90% power
at a significance level of .05? Assume that the disease
locus is halfway between two adjacent markers. With
Bonferroni correction, a single test must attain the

significance level. Figure 4 shows the sam-�51.67 # 10
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Figure 5 Type I error rate when we test linkage by testing under four genetic models: multiplicative, additive, recessive (with ther p 1
low-risk allele in the low-risk population), and dominant (with the high-risk allele in the high-risk population). Total contributions of the
parental populations X and Y are 74%/26%. Left, IA model. Right, CGF model. Two hundred fifty cases are drawn from the 10th generation.

ple size required to reach this level for the CGF model
with an admixture rate of 0.74/0.26. The left panel
represents the situation in which parental population X
has a higher population risk than does parental popu-
lation Y, and the right panel represents that when Y has
a higher population risk than X. In the case of higher
risk in Y, usually no more than 1,000 cases are required
in order to have 90% power to detect the gene, provided
that , except under the dominant model. If X hasr 1 2
a higher risk than Y, the sample size needs to be in-
creased in order to achieve the same power. It is ap-
parent that admixture mapping has poorer power under
a dominant model. The dominant model requires only
one copy of the disease allele to evaluate the risk, re-
sulting in less departure of the ancestral proportion
from an unlinked region at a disease marker locus. Thus,
to have the same power, a dominant model requires a
larger sample size than do other models.

We also calculated the type I error rate when using
McKeigue’s method of testing under the true nullr p 1
hypothesis . Figure 5 presents the type I errorv p 0.5
for both the IA and CGF models when the current ad-
mixture rate is 74%/26% and . The type I errorn p 10
rate is not inflated for the IA model (left panel), but it
is for the CGF model (right panel).

Simulation Studies

To validate the proposed method, we conducted simu-
lation studies. We assumed that there were two parental
populations, X and Y. The allele frequencies of Biaka,
extracted from ALFRED (Cheung et al. 2000), were used
as the marker allele frequencies in X. For simplicity, we
converted the microsatellite markers to diallelic markers
by pooling the rarer alleles. The marker frequency in Y
was taken to be the corresponding allele frequency in X
after adding/subtracting 0.4, according to whether the
allele frequency in X was less/greater than 0.5, and then
adding a random value drawn from a uniform distri-
bution between 0 and 0.1. We assumed that the markers
were evenly distributed across the genome. Samples were
then simulated according to the admixture models in
figure 1. In brief, at the first generation, the marker ge-
notypes of 10,000 unrelated people were simulated ac-
cording to the marker allele frequencies in population
X under the assumption of HWE and independence of
the markers. An admixed population was then formed
by taking a proportion l randomly selected from pop-
ulation X to marry with people generated according to
the marker allele frequencies in population Y, with the
remaining proportion, , randomly mating among1 � l
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Figure 6 Histograms of estimated ancestral proportions (P) across the markers; 1,000 markers on 1,000 individuals were generated. A,
Data simulated using the IA model at a marker density of 1 marker/cM. B, Data simulated using the CGF model at a marker density of 1
marker/cM. C, Data simulated using the IA model at a marker density of 1 marker/5cM. D, Data simulated using the CGF model at a marker
density of 1 marker/5 cM.

themselves. The number of children produced by each
marriage was assumed to follow a Poisson distribution
with mean size 2. The number of crossovers between
two marker loci at a distance d (in cM) was assumed to
follow a Poisson distribution with mean . This pro-d/100
cess was repeated in the following generations. We let
l equal 0 after the second generation for the IA model
and equal a constant value in all generations for the CGF
model. All of the samples were drawn from the 10th
generation. To simulate which individuals were affected,
we let the first marker be the disease locus and calculated
the penetrance functions according to the population
risk ratio, the allele frequencies in the two parental pop-
ulations X and Y, and the inheritance model. In the
following simulations, we use IA-HMM to estimate the
ancestral proportions for data generated under the IA
model and use CGF-HMM for the data generated under
the CGF model.

Is Asymptotically Normally Distributed?(n) (n) (n)ˆ ˆ ˆP ,P , … ,P1 2 m

Since the estimates of are dependent(n) (n) (n)ˆ ˆ ˆP ,P , … ,P1 2 m

on the marker informativeness for ancestry, the distri-
bution of may depart from a normal dis-(n) (n) (n)ˆ ˆ ˆP ,P , … ,P1 2 m

tribution. We therefore randomly sampled 1,000 unre-
lated individuals from the 10th generation, for both the
IA and CGF models, and estimated , us-(n) (n) (n)ˆ ˆ ˆP ,P , … ,P1 2 m

ing the proposed HMM method separately for the IA
and CGF models. Figure 6 presents histograms of the
estimates , where 1,000 markers were(n) (n) (n)ˆ ˆ ˆP ,P , … ,P1 2 m

evenly spaced at a density of 1 marker/cM and a density
of 1 marker/5 cM. The results suggest that there can be
departure from the normal density function. The degree
of the departure is dependent on the marker density, with
the greater marker density resulting in more departure
from the normal distribution. The reason for this is that
the closer two markers are, the stronger their correlation.
However, the correlation can be reduced by selecting the
estimates of P at marker loci every 5 cM.

We next compared a person’s true ancestral propor-
tion from population X to its estimate when the HMM
is used. The upper panels in figure 7 present scatterplots
of the true and estimated proportions for different
marker densities and admixture models when ancestral
marker allele frequencies are known. The results suggest
that the HMM can accurately estimate the ancestral pro-
portion when markers are spaced !5 cM apart, provided
that the ancestral marker allele frequencies are known.
To further explore the effect of marker density on the
estimates of ancestral proportions, we calculated the cor-
relation and the average difference between the true and
the estimated ancestral proportions at the density of one
marker every 1 cM, 2 cM, and 5 cM (table 2). The
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Figure 7 Comparisons of a person’s estimated and true ancestral proportion; 1,000 markers were generated on 1,000 individuals. A–D,
Known ancestral allele frequencies. E–H, Ancestral allele frequencies estimated by STRUCTURE. A and E, Data simulated using the IA model
at a marker density of 1 marker/cM. B and F, Data simulated using the CGF model at a marker density of 1 marker/cM. C and G, Data
simulated using the IA model at a marker density of 1 marker/5 cM. D and H, Data simulated using the CGF model at a marker density of
1 marker/5 cM.

correlation decreases and the average difference in-
creases as the marker spacing increases. We can also
observe that the HHM gives an unbiased estimate of the
ancestral proportion. Our results suggest that the per-
formance of the HMM at a density of one marker every
2 cM is almost as good as that at a density of one marker
every 1 cM. Furthermore, when we applied the CGF-
HMM to data simulated on the basis of the IA model,
we obtained essentially the same results as that from
applying the IA-HMM, indicating that the CGF-HMM
can perform well for data generated from either the IA
or the CGF model.

In practice, we seldom know the true ancestral allele
frequencies. To explore how the ancestral allele fre-
quencies affect the performance of the HMM, we first
estimated these allele frequencies through use of the un-

linked model in STRUCTURE (Falush et al. 2003).
These estimated allele frequencies were then used in the
HMM. The bottom panels of figure 7 present the results
from the HMM for the same data as the upper panels.
Table 2 also presents the correlation and the average
difference when ancestral allele frequencies are un-
known. We observed that the true ancestral proportions
were systematically underestimated.

Power Simulations

We next performed simulations to compare the the-
oretical power with the empirical power. Because the
theoretical sample size required to reach genomewide
significance is much larger for a dominant mode of in-
heritance, our simulations focused on the multiplicative,
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Table 2

The Correlation and Difference (Average � SD) between the True and Estimated
Ancestral Proportions

MODEL AND

MARKER DISTANCE

(IN CM)

ANCESTRAL FREQUENCIES

KNOWN

ANCESTRAL FREQUENCIES

UNKNOWN

Correlation Difference Correlation Difference

IA:
1 .947 1.9#10�4 � .016 .926 �.168 � .023
2 .892 �1.6#10�3 � .017 .873 �.183 � .019
5 .776 2.4#10�4 � .016 .763 �.189 � .017

CGF:
1 .99 8.6#10�5 � .015 .977 �.145 � .039
2 .986 8.7#10�4 � .018 .979 �.16 � .023
5 .982 1.8#10�3 � .028 .976 �.166 � .025

additive, and recessive models. For each mode of inher-
itance and a given population relative risk, we simulated
the number of cases predicted, in theory, to have 90%
power for 5% genomewide significance based on the CGF
model. We then estimated the ancestral proportions using
the CGF-HMM and calculated the empirical power, using
a one-sided Z test. Table 3 presents the power when the
marker density was 1 marker/cM, based on 100 repli-
cations. The empirical power was slightly higher than
the theoretical power. When the marker density was 1
marker/2 cM, the results were similar (data not shown).
We also calculated the type I error based on markers
unlinked to the disease locus, and that was also within
the nominal level (table 3). The average number of gen-
erations was estimated to be for the additive9.9 � 0.31
model when the population relative risk was 2 and was
similar for the other modes of inheritance.

Discussion

Pfaff et al. (2001) explored, via computer simulation,
the distribution of LD created by recent population ad-
mixture for both the IA and CGF models. They con-
cluded that admixture mapping can be confounded by
complex population and evolutionary history, resulting
in a high false-positive rate. Our theoretical work further
demonstrates that the method conditional on parental
admixture (McKeigue 1998) is not testing for linkage,
as was originally claimed. With this method, the pres-
ence of linkage is tested only if the population is equally
admixed and the admixture occurs in a single generation.
For the IA model, the type I error of this method is
reasonable as long as the admixture occurred ∼10 gen-
erations ago. However, the type I error will be inflated
when the admixture takes place within 5 generations
(data not shown). For the CGF model, even if admixture
occurred 10 generations ago, the type I error can still
be inflated. The reason for this is that gametic associa-
tion created by the population admixture process alone
cannot disappear within 5 generations for the IA model

and will last forever for the CGF model because of the
admixture at every generation.

The admixture mapping method can be ameliorated
by considering the distribution of ancestral probabilities
at unlinked marker loci as the null distribution under
the hypothesis of no linkage. This approach makes it
possible to test for linkage with controlled type I error.
It should be noted that we need only sample cases in
the admixed population, an advantage over the case-
control design. Except for under the dominant model,
the power to detect linkage with this method is generally
adequate, since we have shown that the sample size to
detect genomewide 5% significant linkage with 90%
power is within a practical range, provided the popu-
lation relative risk ratio is 12. In some circumstances,
this method is more powerful than affected-sib-pair
linkage analysis. In both the IA and CGF models, we
consider recombination as the only source of disruption
of the LD between the two loci. In practice, other fac-
tors, such as mutation and natural selection, may affect
the power of the proposed admixture mapping method.
However, the effect of these factors may be expected to
be limited because of the short interval of elapsed time.

A challenge of the proposed approach is to select the
markers and estimate the ancestral probability of the
marker loci among cases. Although the markers for a
current genome-scan linkage analysis, usually with a
density of 1 marker/10 cM, may be applicable for ad-
mixture mapping, they may not provide enough infor-
mation to estimate the ancestral probability accurately.
In practice, markers need to be selected according to
the marker information content for ancestry, as mea-
sured by Wright’s FST, or by a more reasonable measure
recently proposed by Rosenberg et al. (2003). In view
of the results of our simulations, we suggest using
1,500–3,000 informative markers in a genomewide ad-
mixture mapping study. It has been pointed out by
McKeigue (1998) that, with multipoint statistical meth-
ods, we can extract 80% of the information regarding
ancestry with a marker spacing of 1 cM in populations
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Table 3

Empirical Power and Type I Error Rates, for Different Modes of
Inheritance and Population Risk Ratios, for Theoretically Calculated
Sample Sizes to Give 90% Power at the 5% Significance Level

MODE OF

INHERITANCE

POWER FOR

GENOMEWIDE

SIGNIFICANCEa

AT A POPULATION

RISK RATIO OF

TYPE I ERROR RATEb AT A

POPULATION RISK RATIO

OF

2 3 5 2 3 5

Multiplicative .92 .93 .97 .0501 .0505 .0478
Additive .94 .92 .83 .0472 .0463 .0486
Recessive .97 .96 .93 .0506 .0489 .0454

NOTE.—Cases were drawn from the 10th generation according to
the CGF model. Ancestral proportions were also estimated using a
HMM based on the CGF model.

a Power is based on 100 replications.
b Type I error rate was calculated as the total number of markers

unlinked to the disease locus with test statistic (one-sidedFZF 1 1.645
test) divided by the total number of such markers.

in which admixture has occurred !10 generations ago.
It may be difficult to reach such a density by selecting
informative markers from among microsatellites alone
(Collins-Schramm et al. 2002; Smith et al. 2001). With
their abundant identification across the human genome,
we can be more flexible in selecting SNPs for admixture
mapping (Sachidanandam et al. 2001). Furthermore, it
has been demonstrated that much of the genome can
be parsed into long “blocks,” within which little re-
combination has occurred (Gabriel et al. 2002). These
blocks are separated by small regions in which recom-
bination “hotspots” are located, suggesting an efficient
approach to admixture mapping. Zhu et al. (2003)
found that African Americans have more haplotype
blocks than European Americans in the RAS gene, and
the haplotype blocks of African Americans are usually
subintervals of those among European Americans. This
result is also consistent with the large survey by Gabriel
et al. (2002). Wright’s FST can be increased if haplotypes
in a block are considered as marker alleles (Zhu et al.
2003). Thus, using SNPs can be a feasible approach to
marker selection for admixture mapping. We can also
view haplotype blocks as unbroken units transmitted
from one or the other ancestral population. However,

the role of hotspots in forming haplotype blocks is still
in debate (Wall and Pritchard 2003), and further re-
search should be done to explore how useful haplotype
blocks are for admixture mapping. To estimate the ad-
mixture of an individual at a particular locus, we have
extended (appendix B) the HMM method proposed by
McKeigue (1998), who used a two-state Markov pro-
cess. In our method, we use a three-state Markov pro-
cess that can be directly applied to a set of genotypes
instead of to individual chromosomes. Therefore, our
HMM method can extract more information by allow-
ing for uncertainty, because we do not need to recon-
struct haplotypes. Our simulations suggest that this
method works well in general.

Finally, our proposed method requires knowing the
allele frequencies in the parental populations. Although
we may obtain most of the allele frequencies in parental
populations from current databases, these frequencies
may only approximate those in the true parental pop-
ulations of our studied sample. For example, we may
have difficulty finding the true allele frequencies for the
appropriate African population when we study African
Americans. This may create a potential limitation to
admixture mapping. As an alternative, we may first ap-
ply STRUCTURE (Falush et al. 2003) to estimate the
ancestral allele frequencies and then input these esti-
mated frequencies into our model. Our simulations sug-
gest that the estimate of ancestral proportions may be
biased in the same direction for each position, resulting
in much of the bias being eliminated when we compare
the ancestral proportion at one locus with that in a
region. Further research should be done to explore the
effect of this on type I error.
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Appendix A

We use the same notation as in the text. According to the CGF model assumption, the haplotype frequencies
produced in generation 0 are , , , and . Let represent the frequencies(0) (0) (0) (0) (n) (n) (n)h p p h p q h p 0 h p 0 g ,g , … ,g1 X 2 X 3 4 1 2 10

of the 10 genotypes at generation n (table 1). These genotypes arise from a part coming from “self mating”1 � l

in parental population X and a l part coming from admixture between parental populations X and Y. Thus, we
can write the 10 genotype probabilities as in table A1.

Let , , and , where the superscript “T”(n) (n) (n) (n) (n) (n) (n) (n) (n)T (n) (n) (n) (n) (n) (n)D p h h � h h D p h q � h p H p (h ,h ,h ,h ,D ,D )1 1 4 2 3 2 1 Y 2 Y 1 2 3 4 1 2

represents “transpose.” Then, . By using table 1, letting subscripts denote the dimen-(0)TH p (p ,q ,0,0,0,p � p )X X X Y
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Table A1

Genotype Probabilities for the IA and CGF Models in Generation n

MODEL

GENOTYPE PROBABILITY UNDER MODEL

M MX XF
D D

(g1)

M MX XF
D d

(g2)

M MX XF
d d
(g3)

M MX YF
D D

(g4)

M MX YF
D d

(g5)

M MX YF
d D
(g6)

M MX YF
d d
(g7)

M MY YF
D D

(g8)

M MY YF
D d

(g9)

M MY YF
d d
(g10)

IA (n�1) (n�1)h h1 1
(n�1) (n�1)2h h1 2

(n�1) (n�1)h h2 2
(n�1) (n�1)2h h1 3

(n�1) (n�1)2h h1 4
(n�1) (n�1)2h h2 3

(n�1) (n�1)2h h2 4
(n�1) (n�1)h h3 3

(n�1) (n�1)2h h3 4
(n�1) (n�1)h h4 4

CGF (1 �l)
(n�1) (n�1)#h h1 1

2(1 �l)
(n�1) (n�1)#h h1 2

(1 �l)
(n�1) (n�1)#h h2 2

2(1 �l)
(n�1) (n�1)#h h1 3

(n�1)�lh p1 Y

2(1 �l)
(n�1) (n�1)#h h1 4

(n�1)�lh q1 Y

2(1 �l)
(n�1) (n�1)#h h2 3

(n�1)�lh p2 Y

2(1 �l)
(n�1) (n�1)#h h2 4

(n�1)�lh q2 Y

(1 �l)
(n�1) (n�1)#h h3 3

(n�1)�lh p3 Y

2(1 �l)
(n�1) (n�1)#h h3 4

(n�1)�lh q3 Y

(n�1)�lh p4 Y

(1 �l)
(n�1) (n�1)#h h4 4

(n�1)�lh q4 Y

sions of a matrix and letting I be the identity matrix, we can obtain the following iterative equation: (n)H p
, where(n�1)AH � D

l
1 � I B( ) 4#4 4#2A p 2[ ]0 C2#4 2#2

and

lp lqY YTD p 0 0 0 0 ,[ ]2 2

where and areB C4#2 2#2

l⎡ ⎤�1 � l �
2

l
1 � l

2B p v4#2 l
1 � l

2⎢ ⎥l
�1 � l �

2⎣ ⎦

and

2l l l
1 � � (1 � l)v 1 � � v( ) ( )C p .2 2 22#2

l lv[ ]�(1 � l)v 1 � �
2 2

Ignoring the subscripts will not result in confusion; therefore, we can write ,(n) n (0) �1 nH p A H � (I � A) (I � A )D
where

n n�1 �1 �1 �nl l l l n1 � I 1 � B I � 1 � C I � 1 � C( ) ( ) [ ( ) ] [ ( ) ]nA p .2 2 2 2[ ]
n0 C
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Rewriting matrix C as , whereC p C C1 2

2l
1 � 1( )C p 21 [ ]

0 1

and

1 �1
C p ,2 l lv[ ]�(1 � l)v 1 � �

2 2

implies . Some algebra then leads ton n�1C p C (C C ) C1 2 1 2

n�1l c cn 11 12C p 1 � ,( ) [ ]c c2 21 22

where

l l ln n(1 � l)v(1 � v) � (1 � v � )(1 � )2 2 2
c p ,11 lv � 2

l l l n n(1 � v � )[(1 � ) � (1 � v) ]2 2 2
c p ,12 lv � 2

l n n�(1 � l)v[(1 � ) � (1 � v) ]2
c p ,21 lv � 2

and

l l ln nv(1 � l)(1 � ) � (1 � v � )(1 � v)2 2 2
c p .22 lv � 2

Therefore, we obtain

nl(n)h p 1 � p � c (p � p ) ,( )1 Y 22 X Y2

nl(n)h p 1 � q � c (q � q ) ,( )2 Y 22 X Y2

n nl l(n)h p 1 � � c (p � p ) � 1 � 1 � p ,[( ) ] [ ( ) ]3 22 X Y Y2 2
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and

n nl l(n)h p 1 � � c (q � q ) � 1 � 1 � q .[( ) ] [ ( ) ]4 22 X Y Y2 2

Then,

(n�1) (n�1) 2 (n�1) (n�1)( )P affected p f [(1 � l)(h � h ) � l(h � h )p ]2 1 3 1 3 Y

(n�1) (n�1) (n�1) (n�1) (n�1) (n�1) (n�1) (n�1)�f [2(1 � l)(h � h )(h � h ) � l(h � h )q � l(h � h )p ]1 1 3 2 4 1 3 Y 2 4 Y

(n�1) (n�1) 2 (n�1) (n�1)�f [(1 � l)(h � h ) � l(h � h )q ]0 2 4 2 4 Y

and

1 1 1(n) (n�1) (n�1) (n�1) (n�1) (n�1) (n�1)P (v) p f h (1 � l)(h � h ) � lp � f h (1 � l)(h � h ) � lp[ ] [ ]{2 1 1 3 Y 1 2 1 3 Y(P(affected) 2 2

1 1(n�1) (n�1) (n�1) (n�1) (n�1) (n�1)� (1 � l)(h � h ) � lq h � f h (1 � l)(h � h ) � lq .[ ] [ ]}2 4 Y 1 0 2 2 4 Y )2 2

Thus, can be expressed as a function of , , , n, and the penetrance functions. Furthermore, is a(n) (n)P (v) p p v P (v)X Y

function of only through . To prove that is a strict monotonic function of when , we need only(n)v c P (v) v r ( 122

demonstrate that is a strict monotonic function of . Let , so thatc v z p v � (l/2)22

l 1 � l
� � z � .

2 2

Taking the derivative of with respect to is the same as taking that of with respect to Z. Therefore,c v c22 22

n n n�1�c l l l l22 p � 1 � l 1 � � 1 � l 1 � � z � nz 1 � l � z 1 � � z .( ) ( ) ( )[ ( ) ( ) ( ) ]2�v 2z 2 2 2

(1) When ,�l/2 � z ! 0

n�c l l22 � � (1 � l) 1 � ! 0 .( )2�v 2z 2

(2) When ,0 ! z � (1 � l)/2

n n n�1�c l(1 � l) l l l22
! � 1 � � 1 � � z � nz 1 � � z .[( ) ( ) ( ) ]2�v 2z 2 2 2

Let ; then, . Thus,w p z/ (1 � 0.5l) 0 ! w � 1/2

n�c l(1 � l) l22 n�1! � 1 � 1 � (1 � w) [1 � (n � 1)w] . (A1)( ) { }2�v 2z 2

The right side of equation (A1) achieves its maximum when , and sow p 2/ (n � 1)

n n�1�c l(1 � l) l 222
! � 1 � 1 � 1 � ! 0 ,( ) [ ( ) ]2�v 2z 2 n � 1

for all .n 1 1
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When , equation (A1) implies . Thus, we have proved that is a strict monotonic function(n)n p 1 �c /�v ! 0 P22

of v.

Appendix B

Consider an individual with M ordered marker loci, with known recombination fractions between loci i andvi

. Under the IA model, we wish to calculate the likelihood for an individual with observed marker genotypes.i � 1
We apply a method similar to that of Lander and Green (1987) to calculate this likelihood. At a locus , we canM i

have 0, 1, or 2 alleles X by descent. Let be the number of alleles X by descent at the locus . Thenv M ii

arise from a Markov chain. The transition probabilities depend only on the admixture rate, the numberv ,v , … ,v1 2 M

of generations since admixture occurred, and the recombination fractions. To calculate the transition matrix, we
consider marker loci and , separated by recombination fraction . Let and represent alleles atM M v M Mi i�1 i iX iY

marker locus X by descent and Y by descent, respectively. At generation 1, we observe the two genotypesM i

and with frequencies and l. Because the mating is random inM M /M M M M /M M 1 � liX (i�1)X iX (i�1)X iX (i�1)X iY (i�1)Y

the following generations, the haplotype frequencies can be calculated without difficulty. The haplotype frequencies
generated by generation aren � 1

2l l l n�2z p p(M M ) p 1 � � 1 � v � (1 � v) ,( ) ( )1 iX (i�1)X 2 2 2

l l l n�2z p p(M M ) p 1 � � 1 � v � (1 � v) ,[ ( ) ]2 iX (i�1)Y 2 2 2

l l l n�2z p p(M M ) p 1 � � 1 � v � (1 � v) ,[ ( ) ]3 iY (i�1)X 2 2 2

and

l l l n�2z p p(M M ) p � 1 � v � (1 � v) .( )4 iY (i�1)Y [ ]2 2 2

The genotype frequencies at generation n can be easily calculated. Let be the transition matrix, so thatT(v )i

2 2z 2z z z4 3 4 3⎡ ⎤
2 2 2(z � z ) (z � z ) (z � z )3 4 3 4 3 4

z z z z � z z z z2 4 1 4 2 3 1 3T(v ) p .i (z � z )(z � z ) (z � z )(z � z ) (z � z )(z � z )1 2 3 4 1 2 3 4 1 2 3 4

2 2z 2z z z⎢ ⎥2 1 2 1
2 2 2(z � z ) (z � z ) (z � z )⎣ ⎦1 2 1 2 1 2

Define a 3#3 diagonal matrix having rows and columns indexed by l, with elementsQ q p P(observedi ll

and if . can be easily calculated and is a function of allele frequenciesgenotype at M d v p l � 1) q p 0 l ( j qi lj lli

in the parental populations. The likelihood for an individual is then given by

TL p d Q T(v )Q T(v ) … T(v )Q 1 ,1 1 2 2 M�1 M

where d is a 3#1 vector with elements equal to the prior probabilities of , which we choose to be Tv d p
, and 1 is a 3#1 vector of unities. This likelihood can be used to estimate l and n. To2 2[l /4,l(1 � l/2),(1 � l/2) ]

calculate the expected ancestry at a marker locus conditional on the marker data, we can apply the Lander-Green
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algorithm (Lander and Green 1987). Missing genotypes at a marker locus can be easily incorporated into the HMM
by directly exploring the next marker locus.

For the CGF model we can use the same method, except for the formula of the transition matrix, which can be
calculated similarly.
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